

University of Nottingham

Farmer psychosocial factors associated with disease control

Naomi Prosser

- Mathematical models give important policy insights for livestock disease control
- Farmers treated as passive bystanders
- Most livestock disease have farmer-led control
- Situations when optional control measures for disease control nationally are not optimal for individual farmers

- Understand differences in farmer behaviour for livestock disease control and how intrinsic psychosocial factors are associated with this
- Account for the dynamic, reactive & heterogeneous response of farmers in disease transmission models to understand the impact of farmer-led control on livestock disease outbreaks

- Models incorporating farmer behaviour will allow improved predictions, such as:
- when farmer-led action is viable
- when non-compliance with nationally imposed measures is likely
- where small nudges may precipitate large changes in behaviour

Epidemiologists, mathematical modellers, behavioural scientists & veterinarians from the Universities of Warwick & Nottingham

Michael Tildesley Matt Keeling Edward Hill Paul Brown

Infectious disease modelling & GUI development

University of Nottingham

Martin Green Jasmeet Kaler Eamonn Ferguson Naomi Prosser

Psychosocial analysis & behaviour elicitation

https://feed.warwick.ac.uk/index.html

Biotechnology and Biological Sciences Research Council

Some work so far

J. Dairy Sci. 105:3559–3573 https://doi.org/10.3168/jds.2021-21386

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Cattle farmer psychosocial profiles and their association with control strategies for bovine viral diarrhea

N. S. Prosser,¹*
M. J. Green,¹
E. Ferguson,² M. J. Tildesley,^{3,4} E. M. Hill,^{3,4} M. J. Keeling,^{3,4} and J. Kaler¹

 ¹School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
 ²School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
 ³Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

⁴Joint UNIversities Pandemic and Epidemiological Research (JUNIPER; https://maths.org/juniper/)

- Causes diverse production losses from farmers
- Endemic in UK
- Many different control strategies farmers can use

- Focus groups to investigate psychosocial factors of interest
- Survey sent out to UK cattle farmers
 - Psychosocial factors
 - Factors from a behaviour change framework
 - How farmers control BVD
- 475 completed responses

Magnitude of concern for others in resource allocation

Synonyms: social value orientation, social preferences, social motives, welfare trade-off ratios, collective interest

Investigated using: Dictator game (Kahneman et al., 1986; Forsythe et al., 1994) Social value orientation slider-measure (Murphy et al., 2011)

Cattle farmer SVOs

Beliefs and expectations in other the behaviours of other people

Investigated using: Likert-scale statements Investment/Trust game

Factor	Item	Loading			
Trust in	I trust my neighbors to be controlling infectious diseases in their herds				
farmers	I trust other farmers nationally to be controlling infectious diseases in their herd	0.70			
α = 0.79	I trust beef farmers				
	I trust dairy farmers	0.50			
	I trust other farmers I meet for the first time	0.41			
Trust in vets	I trust my vet's advice about infectious disease control in my herd				
α = 0.87	My vet would always tell me the truth even if it was not what I wanted to hear				
	I trust vets	0.61			
	Farmers receive high quality veterinary advice from the veterinary profession	0.59			
	I feel respected by my vet	0.58			
	I feel respected by the veterinary profession	0.49			
Trust in Government	I trust governmental judgements about how to control infectious diseases in cattle				
	I feel respected by the government	0.76			
α = 0.76	I trust governmental organizations				
	When dealing with the Government it is better to be careful before you trust them	-0.44			

 α = Cronbach's alpha

74% of farmers made an investment:

(Berg at al., 1995)

University of

How close a person feels to another

Encompasses:

- Connection
- Independence
- Feeling close (includes trust)
- Behavioural closeness
- Similarities

Investigated using:

Inclusion of other in self scale (Aron et al., 1992; Mashek et al., 2007)

(Aron et al., 1992; Mashek et al., 2007)

Increasingly close

	Mean score
Their vet	4.8
Neighbouring farmers	3.9
Vets in general	3.5
Dairy farmers	3.4
Beef farmers	3.3
Farmers in general	3.3
Government	2.0

(Michie et al., 2011; Michie et al. 2014)

BVD control latent classes

Class		Percent of farmers	Typical practice (> 60% of farmers)	Atypical practice (< 40% of farmers)
X	Do nothing	12%		Isolate or test new cattle (34%) Closed (25%) Buy only from BVD-free herds (8%) Separate from neighbouring stock (8%) Blood or tissue test (8%) Vaccinate (4%)
Link	Vaccinate	25%	Vaccinate (94%) Blood or tissue test (66%)	Closed (28%) Buy only from BVD-free herds (22%) Separate from neighboring stock (10%)
	Take care introducing new cattle	16%	Blood or tissue test (88%) Isolate or test new cattle (82%) Buy only from BVD-free herds (67%)	Closed (19%) Vaccinate (4%)
	Use many controls	31%	Test or isolate new cattle (95%) Blood or tissue test (89%) Buy only from BVD-free herds (88%) Separate from neighbouring stock (80%) Vaccinate (74%)	Closed (11%)
####	Separate herd	15%	Closed (99%) Separate from neighboring stock (84%) Blood or tissue test (77%)	

Altruism

• Not associated with BVD control in the multivariable model

Trust

 Low trust in farmers associated with using many controls or keeping a separate herd

Economic games

• Farmers who invested everything in the investment game were associated with being careful introducing new cattle

Psychological proximity

- High psychological proximity to dairy farmers & low psychological proximity to beef farmers associated with the vaccinating classes
- High psychological proximity to the vet associated with using many controls

Capability

• High psychological capability associated with having a separate herd

Opportunity

• High physical opportunity associated with having a separate herd

Motivation

• High motivation associated with the vaccinating classes

- Farmers have different behavioural strategies for BVD control which are associated with psychosocial & COM-B factors
- Important factors were:
 - psychological proximity to the vet
 - lack of trust in other farmers
 - high understanding of how & why to control infectious disease
 - enough time & money
 - motivation

- Investigating how the psychosocial factors relate to behaviour in an evolving disease epidemic scenario
- Incorporating farmer psychosocial and behavioural differences into the disease transmission models